Offline Handwritten Arabic Word Recognition Using HMM - a Character Based Approach without Explicit Segmentation

نویسندگان

  • Volker Märgner
  • Haikal El Abed
  • Mario Pechwitz
چکیده

This paper presents the IfN’s Offline Handwritten Arabic Word Recognition System. The system uses Hidden Markov Models (HMM) for word recognition, and is based on character recognition without explicit segmentation. The first part of this paper deals with databases for word recognition systems, and in particular, the IFN/ENIT database. The second part gives a short description of the pre-processing, normalisation, and feature extraction methods needed for this system. The final part gives a practical approach to the HMM-Recogniser used in our system and some results are presented. Index Terms : Offline Handwritten Recognition, Arabic Word Recognition, Segmentation, Hidden Markov Models, Competition, Database. Résumé : Cet article présente le système de reconnaissance des mots manuscrits arabes développé au sein du Laboratoire IfN. Le système utilise les techniques des Modèles Cachés de Markov (MMC ou Hidden Markov Model HMM) pour la reconnaissance des textes, et est basé sur la reconnaissance de caractères sans segmentation explicite. La première partie de cet article traite l’importance des bases de données pour les systèmes de reconnaissances. La deuxième partie contient une courte description du prétraitement, de la normalisation, et des méthodes d’extraction des caractéristiques images requises pour ce système. La partie principale présente une approche pratique du HMM utilisé dans notre système. Mots-clés : Reconnaissance off-line des mots manuscrits, Manuscrits arabes, Segmentation, Modèles Cachés de Markov, Competition, Bases de données.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Off-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model

In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...

متن کامل

Arabic Handwritten Word Recognition Using HMMs with Explicit State Duration

We describe an offline unconstrained Arabic handwritten word recognition system based on segmentation-free approach and discrete hidden Markov models (HMMs) with explicit state duration. Character durations play a significant part in the recognition of cursive handwriting. The duration information is still mostly disregarded in HMM-based automatic cursive handwriting recognizers due to the fact...

متن کامل

Unconstrained Arabic Online Handwritten Words Segmentation using New HMM State Design

In this paper we propose a segmentation system for unconstrained Arabic online handwriting. An essential problem addressed by analytical-based word recognition system. The system is composed of two-stages the first is a newly special designed hidden Markov model (HMM) and the second is a rules based stage. In our system, handwritten words are broken up into characters by simultaneous segmentati...

متن کامل

A multi-stream hmm approach to offline handwritten arabic word recognition

In This paper we presented new approach for cursive Arabic text recognition system. The objective is to propose methodology analytical offline recognition of handwritten Arabic for rapid implementation. The first part in the writing recognition system is the preprocessing phase is the preprocessing phase to prepare the data was introduces and extracts a set of simple statistical features by two...

متن کامل

Offline handwritten word recognition using a hybrid neural network and hidden Markov model

This paper describes an approach to combine neural network (NN) and Hidden Markov models (HMM) for solving handwritten word recognition problem. The preprocessing involves generating a segmentation graph that describes all possible ways to segment a word into letters. To recognize a word, the NN computes the observation probabilities for each letter hypothesis in the segmentation graph. The HMM...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006